If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20y^2+37y-14=0
a = 20; b = 37; c = -14;
Δ = b2-4ac
Δ = 372-4·20·(-14)
Δ = 2489
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(37)-\sqrt{2489}}{2*20}=\frac{-37-\sqrt{2489}}{40} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(37)+\sqrt{2489}}{2*20}=\frac{-37+\sqrt{2489}}{40} $
| 2(5x-12)=2(2x+4) | | 3d+9=5 | | 2(5x-12)=2(2x+4( | | 6494=0.875x | | 4b+5=14+3b-8b | | 18x4x=5x | | 2x+6=114 | | x(2x+7)(x-6)=0 | | 46-48=2x+566 | | 31.41+p=76.50 | | -70=-5(w+2) | | 12x+12=6x+156 | | x+3/x+2=3+1/x | | 76.50+p=31.41 | | 1/3(x-4)=8 | | 2w+11=41 | | 12x+12=6+156 | | 49=14x | | 68.88k-1.99=45 | | -6(1-7k)=-342 | | -4(2n+7)=20 | | 1.95x+2=1.25x+6 | | 98=8k+6(8k+7) | | 3(x-1)=3x-2 | | 8n=20+6n(n-2) | | 4k-21.50=2.50 | | 3/c8-(c+4/4)=0 | | 1506-2x=3x=646-x | | 21.50k-4=2.50 | | -x/5=-27 | | 28=-k+16-2k-9 | | .11/12b=32 |